Introduction to Probability Sampling

Concepts, Practices and Pitfalls

Johnny Blair
July 2009
Considerations is sample design and sample selection

- Fundamental concepts of sampling
- Probability sampling within the survey process
 - Issues of implementation
 - Logic of some sample designs
 - Sources of error in sampling
- Some issues in sampling rare and special populations
Some reasons for sampling

• Exploratory
• Pretesting
• Testing relationships
• Estimate univariate characteristics of a population
 – Basic research
 – Information for policy decisions
 – Decisions for resource allocation
Estimation of population characteristics

- Average annual number of doctor visits by people 18-65 in the U.S.
- Percentage of voters in the U.S. supporting a public health insurance option
- Proportion of persons 18+ in California with on-line health records
- Mean number of sex partners annually of MSM’s living in Los Angeles
- Total number of retail establishments that plan to purchase accounting software
The sampling process

- Population
- Unknown population parameter(s)
- Select a sample
- Take measurements on that sample
- Use sample measurements to estimate population parameter(s)

• Population

- Unknown population parameter(s)

• Select a sample

• Take measurements on that sample

• Use sample measurements to estimate population parameter(s)

• N

• n/N

• \bar{y}

• \bar{Y}

• y_i
Sampling for good estimation

“…A representative sample is a sample which, for a specified set of variables, resembles the population…[in that] certain specified analyses…. (computation of means, totals etc.) yields results…within acceptable limits set about the corresponding population values, …The mere statement or claim that a sample is representative of a population tells us nothing.”

Probability and non-probability samples

- Some non-probability samples
 - Convenience samples
 - Volunteer samples
 - Judgment
 - Quota

- Types of probability sample designs
 - Simple random sampling
 - Systematic sampling
 - Stratified sampling
 - Cluster sampling
 - Multi-stage samples
Probability samples

• Definition
 – Each population member has a known, non-zero chance of inclusion
 – Sample members are drawn with a random selection mechanism

• Characteristics
 – Statistical basis for estimating population characteristics
 – Estimates of precision of estimates (sampling error) are possible
Simple Random Samples

• Every population element has the same chance of selection, \(n/N \)

• Every sample of size \(n \) has the same chance of selection
Permits estimates of population parameters

Sample mean as estimate of population mean

\[
\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \text{est} \bar{Y}
\]
Sampling variance

- The sampling variance can be estimated from the sample itself.

```
\bar{y} = \frac{(1 - f) s^2}{n}
```

```
v(p) = \frac{(1 - f) p(1 - p)}{n - 1}
```

fpc: \(f = (1 - n/N) \)
Sample of CAPS employees

• Simple random sample

• Questions:
 – Household size (adults and children)
 – Total household income in 2008
 – Took a vacation in last 6 months

• Estimates:
 – Mean number of people in CAPS employee households
 – Average income
 – Proportion of households that took a vacation
Sampling variance, standard error, and confidence limits of estimated mean

- Sampling variance
 \[v(\bar{y}) = \frac{1}{n} \left(\sum_{i=1}^{n} (y_i - \bar{y})^2 \right) / (n - 1) \]

- Standard error
 \[se(\bar{y}) = \sqrt{v(\bar{y})} \]

- Confidence limits
 \[\bar{y} \pm 1.96(se(\bar{y})) \]
Sample size and the precision of sample estimates

For estimating a proportion, if the population variance, $p(1-p)$ can be estimated (or maximized), then

$$v(p) = \frac{(1-f)}{n-1} p(1-p)$$

can be used to compute the necessary sample size, e.g.

$$n = \frac{p(1-p)}{v(p)}$$
And, substituting standard error for variance, for 95% confidence interval the required sample size is:

$$n = \frac{(1.96)^2}{se^2} \cdot (p(1-p))$$
Sample Sizes for 95% confidence intervals around estimates of proportions

<table>
<thead>
<tr>
<th>Pre-survey estimate of p</th>
<th>Sample size for 95% confidence the post-survey estimate is within x% of the true proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>1% or 99%</td>
<td>381</td>
</tr>
<tr>
<td>2% or 98%</td>
<td>753</td>
</tr>
<tr>
<td>5% or 95%</td>
<td>1,825</td>
</tr>
<tr>
<td>10% or 90%</td>
<td>3,458</td>
</tr>
<tr>
<td>20% or 80%</td>
<td>6,147</td>
</tr>
<tr>
<td>30% or 70%</td>
<td>8,068</td>
</tr>
<tr>
<td>40% or 60%</td>
<td>9,220</td>
</tr>
<tr>
<td>50%</td>
<td>9,604</td>
</tr>
</tbody>
</table>
Different ways to set the sample size

• **Statistical methods**
 – Based on targeted confidence intervals
 – Required hypothesis testing power

• **Informal methods**
 – According to previous (typical) practice
 – Based on similar research study
 – To achieve minimum cell sizes for subgroup analyses
 – Based on resource limitations
The sampling process

- Population
- Unknown population parameter(s)
- Select a sample
- Take measurements on that sample
- Use sample measurements to estimate population parameter(s)

\[\frac{n}{N} \]
probability sampling within the survey process

- Define target population
- Frame the population
- Select a sample design
- Decide on sample size
- Select the sample
- Collect the data
- Produce estimates
- Compute variance of the estimates
Sampling Error and Sampling Bias: Threats to the quality of the survey estimates

- Forms of Error
 - Nonsampling error
 - Measurement error
 - Frame error
 - Sampling error
 - sampling variance
 - sampling bias

Source of Bias

- Coverage bias
- Nonresponse bias
Some types of sample bias and why they matter

• **Sampling bias**
 – selection probability = 0
 – Unintended variable selection probabilities

• **Coverage bias**
 – data collection mode exclusion
 – language exclusion

• **Nonresponse bias**
 – non-contacts
 – refusals
ideally estimation is unbiased

An estimate is unbiased (for a particular process) if:

\[E(Y - \bar{y}) = 0 \]

Over all possible instances of the process \{e.g. coverage, selection, response\}
Factors affecting magnitude of bias

- Coverage bias

\[\bar{Y}_c - \bar{Y} = \frac{U}{N} (\bar{Y}_c - \bar{Y}_U) \]

- Nonresponse bias

\[\bar{y}_r - \bar{y}_s = \frac{m_s}{n} (\bar{y}_r - \bar{y}_m) \]
Total Survey Error

Mean square error:

\[MSE(\bar{y}) = \sum_{r} S_{r}^{2} / n_{r} + (\sum_{r} B_{r})^{2} \]

Total survey error [root mean square error]:

\[RMSE(\bar{y}) = \sqrt{\sum_{r} S_{r}^{2} / n_{r} + (\sum_{r} B_{r})^{2}} \]
The decision to participate and nonresponse bias

• Household survey
 – Topic: health behaviors
 – Estimate: mean number of doctor visits
 – Mode: phone
 – Decision to participate
 • Interviewer’s manner
 • Sponsor
 • Available time
 • Topic
Defining a population

• The conceptual target population definition
 – All adults 18-65 in the U.S.
 – All families in California with children under 18
 – Males who have sex with other men

• Issues in developing an operational definition
 – The frame
 – Data collection mode
Developing an operational definition for a telephone survey

• Population: Males 18-55 who have sex with other men

• Frame
 – Geographic area
 – Households
 – Phone: landline, cell

• Screener
 – Age
 – Household
 – Defining behavior
 • Meaning of sex
 • Ever sex with male
Sample frames

- Frames are seldom developed for the purpose of sample surveys
- There may not be a frame that matches the population
- All frames have flaws
- Need to decide whether a frame is suitable
Overview of frame problems

- Omissions
- Ineligibles
- Multiples
- Clusters
- Information error
The need for other sample designs

- Deal with practical constraints
- Address analysis needs
- Accommodate data collection mode or needs
- Control costs
- Improve precision
- Nature of the population
Different approaches to determining the sample design and sample size

- Specified error for minimal cost
- Minimal error for specified cost

- Specify sample size, compute error
- Specify error, compute sample size
Simplified selection: systematic sampling

- Compute sampling interval: \(I = \frac{N}{n} \)

- Select random start: \(1 \leq S \leq I \)

- First selection = S

- Subsequent selections: \(S + I, S + 2I, S + 3I, \ldots \)
Sampling to support analysis objectives

• Key objective: compare race/ethnic groups
 white non-Hispanic
 black non-Hispanic
 Hispanic

• Optimal design: equal numbers of each group

• Sample at different rates (sampling fractions), e.g.
 white non-Hispanic 1/4
 black non-Hispanic 1/2
 Hispanic take all
 Others take none
Accommodate data collection mode

• Telephone data collection issues
 – Unlisted numbers
 – Multiple phone lines
 – Landline and cell
 – Cell only
 – No phone

• Some sample design alternatives
 – RDD
 – Weighting in estimation
 – Data collection rule
 – Dual frame
 – Using interruptions in phone service as surrogate
Sampling to reduce costs

- Two-stage samples
 - Clusters
 - Individuals with in clusters

Population: high school students

1. Probability sample of schools
2. Probability sample of classrooms
3. Select all students within a sampled class
4. Self-administered questionnaire
Sampling to increase precision

• Increase sample size

• Stratification
 – Proportional
 – Disproportional
 • Costs or population variances differ by strata
 • Strata are of direct interest
Sampling a rare population

- Some demographic groups
 - Hispanics age 65 or older
 - Blacks with household incomes > $150,000
- Groups defined by multiple factors
 - Asian MSM’s residing in New York city
 - Females who are recent immigrants from Middle East
- Groups defined by relatively rare experiences or characteristics
 - MSM’s
 - Gulf war veterans
 - Persons with AIDS
 - Patrons of sex clubs
Sampling to survey a rare population

• Multiple frames
 – Special frame to improve yield
 – General population frame to ensure coverage

• Stratification
 – Oversample known neighborhoods
 – Some sampling in remainder of geographic area

• Network sampling
 – Link population elements for reporting purposes
 – Specify reporting rules so that inclusion probabilities are known
Multiple frames

- Population: Patrons of sex clubs in a designated city
 - Club membership lists
 - Time-location sampling at clubs
 - General population screening in the city
Network sampling

- In most household sample surveys, respondents report only about themselves or their households
 - One-to-one reporting rule
 - Screening yield = eligible households / n

- In network sampling, households are permitted report about themselves and other households to which they are linked
 - One-to-many reporting rule
 - Screening yield = (eligible households + networked households) / n
 - Cost savings to identify E eligible households

Network sampling can be used to:
1. Count eligible households [estimate population size]
2. Collect further information about eligible households
Network sampling

Population: Gulf War veterans
Mode: telephone

• Select a general population sample of households
• Screen each selected household for target population
• Ask each household about adult sibling households in the geographic area: presence of target population member- Yes/No
 – If Yes
 • Request contact information for sibling household
 • or simply ask about sibling household
 • Determine how many other households *could have* reported the identified sibling household
Disproportionate stratified sampling

• Divide the population into strata with differing prevalence rates for the rare population
• Sample strata with higher prevalence at higher sampling rates
• Appreciable gains in precision are possible if:
 – Some strata have substantially higher prevalence rates
 – The strata contain a large proportion of the rare population
 – The gain is also dependent on the cost of a full interview relative to a screening interview
Telephone survey of MSM’s in selected cities

• Stratified telephone exchanges into groups based on prevalence estimates
 – Estimates based on multiple sources
 – Expected error in the prevalence estimates

• Set sample allocations to strata
 – Based primarily on expected cost per identified eligible during screening
 – Released sample in random replicates
 – Adjusted sample allocations based on actual costs per screened case
Sample weights: an overview

• Accounting for the sample survey design
 – Different probabilities of selection
 – Under-coverage

• Accounting for survey sample implementation
 – Nonresponse
 – Adjusting to known population distributions
Weighting to adjust for selection bias

• Telephone survey of adults 18-65 in households in NY
 – RDD covers all landlines
 – Cell frame

• Representations in frame(s)
 – Households group A: 1 phone number
 – Households group B: 2 phone numbers
 – Households group C: 3 phone numbers
 – Households group D: 4+ phone numbers

Affect of frame multiplicity on selection:

\[P_{H_i} \propto \sum L_i \]

Weight for frame multiplicity:

\[W_{H_i} = \frac{1}{\sum L_{H_i}} \]
The decision to participate and nonresponse bias (2)

Are refusals for some reasons of more concern than others?

Reasons for cooperation
• Interviewer’s manner
• Sponsor
• Available time
• Topic
The logic of weighting for nonresponse

• Groups over-represented in the sample
 – Persons 60 and older
 – Households with children
 – Persons with college or more
 – Whites

• Groups under-represented in the sample
 – Persons under age 30
 – Households without children
 – Persons with less than high school
 – Hispanics and blacks

• We want the sample to reflect the population demographics
• We have information to suggest some of these groups may differ on the measures
• Create weighting classes [cells] to which weights are applied
• Effectiveness depends on
 – The respondents in each weighting class being a random sample of all respondents
 – Reduction in bias exceeds increase in sampling variance
Good sampling practice: a summary

• Define population
• Maximize coverage
• Probability sampling
• Know when and how to weight
• Response rate: don’t let it become a sample of volunteers
Models in survey sampling inference: the example of Respondent Driven Sampling (RDS)

• Network sampling uses respondent reports of network size to establish known (though not error-free) probabilities of selection.
• Network samples can produce estimates of population parameters much like those from any probability sample.

• Respondent Driven sampling also uses reports to identify members of a target population.
• RDS estimates are based on a mathematical model, which relies on a set of assumptions:
 – Degree
 – Recruitment at random
 – Reciprocity
 – Convergence
Questions about model-based sampling inference

• What do we know about the assumptions the model depends on?
 – Are key assumptions strong or weak?
 – To what extent do the assumptions hold in a particular instance?
 – How robust is the model?
 – What protection do you have if they don’t?

• Can you adjust for (or measure) the impact on your results?

• What sources of nonsampling error may affect estimates?
Survey Sampling and Methodology

References

- Basic
 - Groves et al.: Survey Methodology, Wiley, 2004

- Advanced
 - Kish, L.: Survey Sampling, Wiley, 1965

- Specialized